blart/raw/representation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
//! Trie node representation
use crate::{
alloc::{do_alloc, Allocator},
rust_nightly_apis::assume,
tagged_pointer::TaggedPointer,
AsBytes,
};
use std::{
alloc::Layout,
fmt,
hash::Hash,
iter::FusedIterator,
marker::PhantomData,
mem::{self, ManuallyDrop},
ops::{Range, RangeBounds},
ptr::{self, NonNull},
};
mod header;
pub(crate) use header::*;
mod inner_node_256;
pub use inner_node_256::*;
mod inner_node_48;
pub use inner_node_48::*;
mod inner_node_compressed;
pub use inner_node_compressed::*;
/// The representation of inner nodes
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum NodeType {
/// Node that references between 2 and 4 children
Node4 = 0b000,
/// Node that references between 5 and 16 children
Node16 = 0b001, // 0b001
/// Node that references between 17 and 49 children
Node48 = 0b010, // 0b010
/// Node that references between 49 and 256 children
Node256 = 0b011, // 0b011
/// Node that contains a single value
Leaf = 0b100, // 0b100
}
impl NodeType {
/// The upper bound on the number of child nodes that this
/// NodeType can have.
pub const fn upper_capacity(self) -> usize {
match self {
NodeType::Node4 => 4,
NodeType::Node16 => 16,
NodeType::Node48 => 48,
NodeType::Node256 => 256,
NodeType::Leaf => 0,
}
}
/// Converts a u8 value to a [`NodeType`]
///
/// # Safety
/// - `src` must be a valid variant from the enum
pub const unsafe fn from_u8(src: u8) -> NodeType {
// SAFETY: `NodeType` is repr(u8)
unsafe { std::mem::transmute::<u8, NodeType>(src) }
}
/// Return true if an [`InnerNode`] with the given [`NodeType`] and
/// specified number of children should be shrunk.
///
/// # Panics
/// - Panics if `node_type` equals [`NodeType::Leaf`]
pub fn should_shrink_inner_node(self, num_children: usize) -> bool {
match self {
NodeType::Node4 => false,
NodeType::Node16 => num_children <= 4,
NodeType::Node48 => num_children <= 16,
NodeType::Node256 => num_children <= 48,
NodeType::Leaf => panic!("cannot shrink leaf"),
}
}
/// Return the range of number of children that each node type accepts.
pub const fn capacity_range(self) -> Range<usize> {
match self {
NodeType::Node4 => Range { start: 1, end: 5 },
NodeType::Node16 => Range { start: 5, end: 17 },
NodeType::Node48 => Range { start: 17, end: 49 },
NodeType::Node256 => Range {
start: 49,
end: 256,
},
NodeType::Leaf => Range { start: 0, end: 0 },
}
}
}
/// A placeholder type that has the required amount of alignment.
///
/// An alignment of 8 gives us 3 unused bits in any pointer to this type.
#[derive(Debug)]
#[repr(align(8))]
struct OpaqueValue;
/// An opaque pointer to a [`Node`].
///
/// Could be any one of the NodeTypes, need to perform check on the runtime type
/// and then cast to a [`NodePtr`].
#[repr(transparent)]
pub struct OpaqueNodePtr<K, V, const PREFIX_LEN: usize>(
TaggedPointer<OpaqueValue, 3>,
PhantomData<(K, V)>,
);
impl<K, V, const PREFIX_LEN: usize> Copy for OpaqueNodePtr<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Clone for OpaqueNodePtr<K, V, PREFIX_LEN> {
fn clone(&self) -> Self {
*self
}
}
impl<K, V, const PREFIX_LEN: usize> fmt::Debug for OpaqueNodePtr<K, V, PREFIX_LEN> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("OpaqueNodePtr").field(&self.0).finish()
}
}
impl<K, V, const PREFIX_LEN: usize> fmt::Pointer for OpaqueNodePtr<K, V, PREFIX_LEN> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.0, f)
}
}
impl<K, V, const PREFIX_LEN: usize> Eq for OpaqueNodePtr<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> PartialEq for OpaqueNodePtr<K, V, PREFIX_LEN> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<K, V, const PREFIX_LEN: usize> Hash for OpaqueNodePtr<K, V, PREFIX_LEN> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<K, V, const PREFIX_LEN: usize> OpaqueNodePtr<K, V, PREFIX_LEN> {
/// Construct a new opaque node pointer from an existing non-null node
/// pointer.
pub fn new<N>(pointer: NonNull<N>) -> Self
where
N: Node<PREFIX_LEN, Value = V>,
{
let mut tagged_ptr = TaggedPointer::from(pointer.cast::<OpaqueValue>());
tagged_ptr.set_data(N::TYPE as usize);
OpaqueNodePtr(tagged_ptr, PhantomData)
}
/// Return `true` if this Node_ pointer points to the specified concrete
/// [`NodeType`].
pub fn is<N: Node<PREFIX_LEN>>(&self) -> bool {
self.0.to_data() == usize::from(N::TYPE as u8)
}
/// Create a non-opaque node pointer that will eliminate future type
/// assertions, if the type of the pointed node matches the given
/// node type.
#[inline]
pub fn cast<N: Node<PREFIX_LEN>>(self) -> Option<NodePtr<PREFIX_LEN, N>> {
if self.is::<N>() {
Some(NodePtr(self.0.to_ptr().cast::<N>()))
} else {
None
}
}
/// Cast this opaque pointer type an enum that contains a pointer to the
/// concrete node type.
pub fn to_node_ptr(self) -> ConcreteNodePtr<K, V, PREFIX_LEN> {
match self.node_type() {
NodeType::Node4 => {
ConcreteNodePtr::Node4(NodePtr(
self.0.to_ptr().cast::<InnerNode4<K, V, PREFIX_LEN>>(),
))
},
NodeType::Node16 => ConcreteNodePtr::Node16(NodePtr(
self.0.to_ptr().cast::<InnerNode16<K, V, PREFIX_LEN>>(),
)),
NodeType::Node48 => ConcreteNodePtr::Node48(NodePtr(
self.0.to_ptr().cast::<InnerNode48<K, V, PREFIX_LEN>>(),
)),
NodeType::Node256 => ConcreteNodePtr::Node256(NodePtr(
self.0.to_ptr().cast::<InnerNode256<K, V, PREFIX_LEN>>(),
)),
NodeType::Leaf => {
ConcreteNodePtr::LeafNode(NodePtr(
self.0.to_ptr().cast::<LeafNode<K, V, PREFIX_LEN>>(),
))
},
}
}
/// Retrieve the runtime node type information.
#[inline]
pub fn node_type(self) -> NodeType {
// SAFETY: We know that we can convert the usize into a `NodeType` because
// we have only stored `NodeType` values into this pointer
unsafe { NodeType::from_u8(self.0.to_data() as u8) }
}
/// Get a mutable reference to the header if the underlying node has a
/// header field, otherwise return `None`.
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'h is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not get accessed
/// (read or written) through any other pointer.
pub(crate) unsafe fn header_mut<'h>(self) -> Option<&'h mut Header<PREFIX_LEN>> {
let header_ptr = match self.node_type() {
NodeType::Node4 | NodeType::Node16 | NodeType::Node48 | NodeType::Node256 => unsafe {
self.header_mut_unchecked()
},
NodeType::Leaf => {
return None;
},
};
// SAFETY: The pointer is properly aligned and points to a initialized instance
// of Header that is dereferenceable. The lifetime safety requirements are
// passed up to the caller of this function.
Some(header_ptr)
}
/// Get a mutable reference to the header, this doesn't check if the pointer
/// is to an inner node.
///
/// # Safety
/// - The pointer must be to an inner node
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'h is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not get accessed
/// (read or written) through any other pointer.
pub(crate) unsafe fn header_mut_unchecked<'h>(self) -> &'h mut Header<PREFIX_LEN> {
unsafe { self.0.to_ptr().cast::<Header<PREFIX_LEN>>().as_mut() }
}
/// Get a shared reference to the header, this doesn't check if the pointer
/// is to an inner node.
///
/// # Safety
/// - The pointer must be to an inner node
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'h is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not be mutated
/// through any other pointer.
pub(crate) unsafe fn header_ref_unchecked<'h>(self) -> &'h Header<PREFIX_LEN> {
unsafe { self.0.to_ptr().cast::<Header<PREFIX_LEN>>().as_ref() }
}
}
/// An enum that encapsulates pointers to every type of [`Node`]
pub enum ConcreteNodePtr<K, V, const PREFIX_LEN: usize> {
/// Node that references between 2 and 4 children
Node4(NodePtr<PREFIX_LEN, InnerNode4<K, V, PREFIX_LEN>>),
/// Node that references between 5 and 16 children
Node16(NodePtr<PREFIX_LEN, InnerNode16<K, V, PREFIX_LEN>>),
/// Node that references between 17 and 49 children
Node48(NodePtr<PREFIX_LEN, InnerNode48<K, V, PREFIX_LEN>>),
/// Node that references between 49 and 256 children
Node256(NodePtr<PREFIX_LEN, InnerNode256<K, V, PREFIX_LEN>>),
/// Node that contains a single value
LeafNode(NodePtr<PREFIX_LEN, LeafNode<K, V, PREFIX_LEN>>),
}
impl<K, V, const PREFIX_LEN: usize> Copy for ConcreteNodePtr<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Clone for ConcreteNodePtr<K, V, PREFIX_LEN> {
fn clone(&self) -> Self {
*self
}
}
impl<K, V, const PREFIX_LEN: usize> ConcreteNodePtr<K, V, PREFIX_LEN> {
/// Convert this node pointer with node type information into an
/// [`OpaqueNodePtr`] with the type information stored in the pointer.
pub fn to_opaque(self) -> OpaqueNodePtr<K, V, PREFIX_LEN> {
match self {
ConcreteNodePtr::Node4(node_ptr) => node_ptr.to_opaque(),
ConcreteNodePtr::Node16(node_ptr) => node_ptr.to_opaque(),
ConcreteNodePtr::Node48(node_ptr) => node_ptr.to_opaque(),
ConcreteNodePtr::Node256(node_ptr) => node_ptr.to_opaque(),
ConcreteNodePtr::LeafNode(node_ptr) => node_ptr.to_opaque(),
}
}
}
impl<K, V, const PREFIX_LEN: usize> fmt::Debug for ConcreteNodePtr<K, V, PREFIX_LEN> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Node4(arg0) => f.debug_tuple("Node4").field(arg0).finish(),
Self::Node16(arg0) => f.debug_tuple("Node16").field(arg0).finish(),
Self::Node48(arg0) => f.debug_tuple("Node48").field(arg0).finish(),
Self::Node256(arg0) => f.debug_tuple("Node256").field(arg0).finish(),
Self::LeafNode(arg0) => f.debug_tuple("LeafNode").field(arg0).finish(),
}
}
}
macro_rules! concrete_node_ptr_from {
($input:ty, $variant:ident) => {
impl<K, V, const PREFIX_LEN: usize> From<$input> for ConcreteNodePtr<K, V, PREFIX_LEN> {
fn from(value: $input) -> Self {
ConcreteNodePtr::$variant(value)
}
}
};
}
concrete_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode4<K, V, PREFIX_LEN>>, Node4);
concrete_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode16<K, V, PREFIX_LEN>>, Node16);
concrete_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode48<K, V, PREFIX_LEN>>, Node48);
concrete_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode256<K, V, PREFIX_LEN>>, Node256);
concrete_node_ptr_from!(NodePtr<PREFIX_LEN, LeafNode<K, V, PREFIX_LEN>>, LeafNode);
/// An enum that encapsulates pointers to every type of [`InnerNode`]
pub enum ConcreteInnerNodePtr<K, V, const PREFIX_LEN: usize> {
/// Node that references between 2 and 4 children
Node4(NodePtr<PREFIX_LEN, InnerNode4<K, V, PREFIX_LEN>>),
/// Node that references between 5 and 16 children
Node16(NodePtr<PREFIX_LEN, InnerNode16<K, V, PREFIX_LEN>>),
/// Node that references between 17 and 49 children
Node48(NodePtr<PREFIX_LEN, InnerNode48<K, V, PREFIX_LEN>>),
/// Node that references between 49 and 256 children
Node256(NodePtr<PREFIX_LEN, InnerNode256<K, V, PREFIX_LEN>>),
}
impl<K, V, const PREFIX_LEN: usize> Copy for ConcreteInnerNodePtr<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Clone for ConcreteInnerNodePtr<K, V, PREFIX_LEN> {
fn clone(&self) -> Self {
*self
}
}
impl<K, V, const PREFIX_LEN: usize> fmt::Debug for ConcreteInnerNodePtr<K, V, PREFIX_LEN> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Node4(arg0) => f.debug_tuple("Node4").field(arg0).finish(),
Self::Node16(arg0) => f.debug_tuple("Node16").field(arg0).finish(),
Self::Node48(arg0) => f.debug_tuple("Node48").field(arg0).finish(),
Self::Node256(arg0) => f.debug_tuple("Node256").field(arg0).finish(),
}
}
}
macro_rules! concrete_inner_node_ptr_from {
($input:ty, $variant:ident) => {
impl<K, V, const PREFIX_LEN: usize> From<$input>
for ConcreteInnerNodePtr<K, V, PREFIX_LEN>
{
fn from(value: $input) -> Self {
Self::$variant(value)
}
}
};
}
concrete_inner_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode4<K, V, PREFIX_LEN>>, Node4);
concrete_inner_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode16<K, V, PREFIX_LEN>>, Node16);
concrete_inner_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode48<K, V, PREFIX_LEN>>, Node48);
concrete_inner_node_ptr_from!(NodePtr<PREFIX_LEN, InnerNode256<K, V, PREFIX_LEN>>, Node256);
impl<K, V, const PREFIX_LEN: usize> From<ConcreteInnerNodePtr<K, V, PREFIX_LEN>>
for ConcreteNodePtr<K, V, PREFIX_LEN>
{
fn from(value: ConcreteInnerNodePtr<K, V, PREFIX_LEN>) -> Self {
match value {
ConcreteInnerNodePtr::Node4(inner_ptr) => ConcreteNodePtr::Node4(inner_ptr),
ConcreteInnerNodePtr::Node16(inner_ptr) => ConcreteNodePtr::Node16(inner_ptr),
ConcreteInnerNodePtr::Node48(inner_ptr) => ConcreteNodePtr::Node48(inner_ptr),
ConcreteInnerNodePtr::Node256(inner_ptr) => ConcreteNodePtr::Node256(inner_ptr),
}
}
}
/// A pointer to a [`Node`].
#[repr(transparent)]
pub struct NodePtr<const PREFIX_LEN: usize, N>(NonNull<N>);
impl<const PREFIX_LEN: usize, N: Node<PREFIX_LEN>> NodePtr<PREFIX_LEN, N> {
/// Create a safe pointer to a [`Node`].
///
/// # Safety
/// - Given pointer must be non-null, aligned, and valid for reads or writes
/// of a value of N type.
pub unsafe fn new(ptr: *mut N) -> Self {
// SAFETY: The safety requirements of this function match the
// requirements of `NonNull::new_unchecked`.
unsafe { NodePtr(NonNull::new_unchecked(ptr)) }
}
/// Allocate the given [`Node`] on the [`std::alloc::Global`] heap and
/// return a [`NodePtr`] that wrap the raw pointer.
pub fn allocate_node_ptr(node: N, alloc: &impl Allocator) -> Self {
let layout = Layout::new::<mem::MaybeUninit<N>>();
let mut ptr: NonNull<mem::MaybeUninit<N>> =
do_alloc(alloc, layout).expect("memory is infinite").cast();
// SAFETY: The pointer from [`Box::into_raw`] is non-null, aligned, and valid
// for reads and writes of the [`Node`] `N`.
let ptr: NonNull<N> = unsafe {
ptr.as_mut().write(node);
ptr.cast()
};
NodePtr(ptr)
}
/// Deallocate a [`Node`] object created with the
/// [`NodePtr::allocate_node_ptr`] function.
///
/// # Safety
/// - This function can only be called once for a given node object.
/// - The given allocator must be the same one that was used in the call to
/// [`NodePtr::allocate_node_ptr`]
#[must_use]
pub unsafe fn deallocate_node_ptr(node: Self, alloc: &impl Allocator) -> N {
// Read the value out onto the stack
// SAFETY: From the constructors (`new`/`allocate_node_ptr`) we know that this
// pointer will valid for reads, properly aligned, and initialized. We prevent
// double drop by deallocating the memory in the following lines without ever
// calling `drop_in_place`.
let value = unsafe { ptr::read(node.0.as_ptr()) };
let layout = Layout::new::<N>();
if layout.size() != 0 {
// If the value has a non-zero size (should be true of all nodes),
// then deallocate the node object without dropping it (even) though
// all `Node`s don't implement drop.
// SAFETY:
// - The safety condition on this function requires that this allocator is the
// same one which initially allocated the memory block
// - The layout fits the block of memory because it was the same layout used to
// create the block (in `allocate_node_ptr`).
unsafe {
alloc.deallocate(node.0.cast(), layout);
}
}
value
}
/// Moves `new_value` into the referenced `dest`, returning the previous
/// `dest` value.
///
/// Neither value is dropped.
///
/// # Safety
/// - The node the `dest` pointers points to must not get accessed (read or
/// written) through any other pointers concurrent to this modification.
pub unsafe fn replace(dest: Self, new_value: N) -> N {
// SAFETY: The lifetime of the `dest` reference is restricted to this function,
// and the referenced node is not accessed by the safety doc on the containing
// function.
let dest = unsafe { dest.as_mut() };
mem::replace(dest, new_value)
}
/// Cast node pointer back to an opaque version, losing type information
pub fn to_opaque(self) -> OpaqueNodePtr<N::Key, N::Value, PREFIX_LEN> {
OpaqueNodePtr::new(self.0)
}
/// Reads the Node from self without moving it. This leaves the memory in
/// self unchanged.
pub fn read(self) -> ManuallyDrop<N> {
// SAFETY: The non-null requirements of ptr::read is already
// guaranteed by the NonNull wrapper. The requirements of proper alignment,
// initialization, validity for reads are required by the construction
// of the NodePtr type.
ManuallyDrop::new(unsafe { ptr::read(self.0.as_ptr()) })
}
/// Returns a shared reference to the value.
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not get mutated
/// (except inside UnsafeCell).
pub unsafe fn as_ref<'a>(self) -> &'a N {
// SAFETY: The pointer is properly aligned and points to a initialized instance
// of N that is dereferenceable. The lifetime safety requirements are passed up
// to the invoked of this function.
unsafe { self.0.as_ref() }
}
/// Returns a unique mutable reference to the node.
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the node. In particular, for the duration of this
/// lifetime, the node the pointer points to must not get accessed (read
/// or written) through any other pointer.
pub unsafe fn as_mut<'a>(mut self) -> &'a mut N {
// SAFETY: The pointer is properly aligned and points to a initialized instance
// of N that is dereferenceable. The lifetime safety requirements are passed up
// to the invoked of this function.
unsafe { self.0.as_mut() }
}
/// Acquires the underlying *mut pointer.
pub fn to_ptr(self) -> *mut N {
self.0.as_ptr()
}
}
impl<K, V, const PREFIX_LEN: usize> NodePtr<PREFIX_LEN, LeafNode<K, V, PREFIX_LEN>> {
/// Returns a shared reference to the key and value of the pointed to
/// [`LeafNode`].
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not get mutated
/// (except inside UnsafeCell).
pub unsafe fn as_key_value_ref<'a>(self) -> (&'a K, &'a V) {
// SAFETY: Safety requirements are covered by the containing function.
let leaf = unsafe { self.as_ref() };
(leaf.key_ref(), leaf.value_ref())
}
/// Returns a unique mutable reference to the key and value of the pointed
/// to [`LeafNode`].
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the node. In particular, for the duration of this
/// lifetime, the node the pointer points to must not get accessed (read
/// or written) through any other pointer.
pub unsafe fn as_key_ref_value_mut<'a>(self) -> (&'a K, &'a mut V) {
// SAFETY: Safety requirements are covered by the containing function.
let leaf = unsafe { self.as_mut() };
let (key, value) = leaf.entry_mut();
(key, value)
}
/// Returns a unique mutable reference to the key and value of the pointed
/// to [`LeafNode`].
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not get mutated
/// (except inside UnsafeCell).
pub unsafe fn as_key_ref<'a>(self) -> &'a K
where
V: 'a,
{
// SAFETY: Safety requirements are covered by the containing function.
let leaf = unsafe { self.as_ref() };
leaf.key_ref()
}
/// Returns a unique mutable reference to the key and value of the pointed
/// to [`LeafNode`].
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the data. In particular, for the duration of this
/// lifetime, the memory the pointer points to must not get mutated
/// (except inside UnsafeCell).
pub unsafe fn as_value_ref<'a>(self) -> &'a V
where
K: 'a,
V: 'a,
{
// SAFETY: Safety requirements are covered by the containing function.
let leaf = unsafe { self.as_ref() };
leaf.value_ref()
}
/// Returns a unique mutable reference to the key and value of the pointed
/// to [`LeafNode`].
///
/// # Safety
/// - You must enforce Rust’s aliasing rules, since the returned lifetime
/// 'a is arbitrarily chosen and does not necessarily reflect the actual
/// lifetime of the node. In particular, for the duration of this
/// lifetime, the node the pointer points to must not get accessed (read
/// or written) through any other pointer.
pub unsafe fn as_value_mut<'a>(self) -> &'a mut V
where
K: 'a,
V: 'a,
{
// SAFETY: Safety requirements are covered by the containing function.
let leaf = unsafe { self.as_mut() };
leaf.value_mut()
}
}
impl<const PREFIX_LEN: usize, N> Clone for NodePtr<PREFIX_LEN, N> {
fn clone(&self) -> Self {
*self
}
}
impl<const PREFIX_LEN: usize, N> Copy for NodePtr<PREFIX_LEN, N> {}
impl<const PREFIX_LEN: usize, N: Node<PREFIX_LEN>> From<&mut N> for NodePtr<PREFIX_LEN, N> {
fn from(node_ref: &mut N) -> Self {
// SAFETY: Pointer is non-null, aligned, and pointing to a valid instance of N
// because it was constructed from a mutable reference.
unsafe { NodePtr::new(node_ref as *mut _) }
}
}
impl<const PREFIX_LEN: usize, N> PartialEq for NodePtr<PREFIX_LEN, N> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<const PREFIX_LEN: usize, N> Eq for NodePtr<PREFIX_LEN, N> {}
impl<const PREFIX_LEN: usize, N> fmt::Debug for NodePtr<PREFIX_LEN, N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("NodePtr").field(&self.0).finish()
}
}
impl<const PREFIX_LEN: usize, N> fmt::Pointer for NodePtr<PREFIX_LEN, N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.0, f)
}
}
pub(crate) mod private {
/// This trait is used to seal other traits, such that they cannot be
/// implemented outside of the crate.
pub trait Sealed {}
impl<K, V, const PREFIX_LEN: usize> Sealed for super::InnerNode4<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Sealed for super::InnerNode16<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Sealed for super::InnerNode48<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Sealed for super::InnerNode256<K, V, PREFIX_LEN> {}
impl<K, V, const PREFIX_LEN: usize> Sealed for super::LeafNode<K, V, PREFIX_LEN> {}
}
/// All nodes which contain a runtime tag that validates their type.
pub trait Node<const PREFIX_LEN: usize>: private::Sealed {
// TODO: See if possible to remove PREFIX_LEN generic from this trait
/// The runtime type of the node.
const TYPE: NodeType;
/// The key type carried by the leaf nodes
type Key;
/// The value type carried by the leaf nodes
type Value;
}
/// This struct represents a successful match against a prefix using either the
/// [`InnerNode::optimistic_match_prefix`] or [`InnerNode::match_full_prefix`]
/// functions.
#[derive(Debug)]
pub struct PrefixMatch {
/// How many bytes were matched
pub matched_bytes: usize,
}
/// This struct represents a successful match against a prefix using the
/// [`InnerNode::attempt_pessimistic_match_prefix`] function.
#[derive(Debug)]
pub struct AttemptOptimisticPrefixMatch {
/// How many bytes were matched
pub matched_bytes: usize,
/// This flag will be true if the `attempt_pessimistic_match_prefix`
/// function fell back to an optimistic mode, and assumed prefix match by
/// key length.
pub any_implicit_bytes: bool,
}
/// Represents a prefix mismatch when looking at the entire prefix, including in
/// cases where it is read from a child leaf node.
pub struct ExplicitMismatch<K, V, const PREFIX_LEN: usize> {
/// How many bytes were matched
pub matched_bytes: usize,
/// Value of the byte that made it not match
pub prefix_byte: u8,
/// Pointer to the leaf if the prefix was reconstructed
pub leaf_ptr: OptionalLeafPtr<K, V, PREFIX_LEN>,
}
impl<K, V, const PREFIX_LEN: usize> fmt::Debug for ExplicitMismatch<K, V, PREFIX_LEN> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Mismatch")
.field("matched_bytes", &self.matched_bytes)
.field("prefix_byte", &self.prefix_byte)
.field("leaf_ptr", &self.leaf_ptr)
.finish()
}
}
/// Represents a prefix mismatch when looking only at the prefix content present
/// in an [`InnerNode`] header.
#[derive(Debug)]
pub struct PessimisticMismatch {
/// How many bytes were matched
pub matched_bytes: usize,
/// Value of the byte that made it not match.
///
/// If this field is `None`, then the mismatch happened in the implicit
/// prefix bytes.
pub prefix_byte: Option<u8>,
}
impl From<OptimisticMismatch> for PessimisticMismatch {
fn from(value: OptimisticMismatch) -> Self {
Self {
matched_bytes: value.matched_bytes,
prefix_byte: None,
}
}
}
/// Represents a prefix mismatch when looking only at the prefix content present
/// in an [`InnerNode`] header.
#[derive(Debug)]
pub struct OptimisticMismatch {
/// How many bytes were matched
pub matched_bytes: usize,
}
/// Common methods implemented by all inner node.
pub trait InnerNode<const PREFIX_LEN: usize>: Node<PREFIX_LEN> + Sized + fmt::Debug {
/// The type of the next larger node type.
type GrownNode: InnerNode<PREFIX_LEN, Key = Self::Key, Value = Self::Value>;
/// The type of the next smaller node type.
type ShrunkNode: InnerNode<PREFIX_LEN, Key = Self::Key, Value = Self::Value>;
/// The type of the iterator over all children of the inner node
type Iter<'a>: Iterator<Item = (u8, OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>)>
+ DoubleEndedIterator
+ FusedIterator
where
Self: 'a;
/// Create an empty [`InnerNode`], with no children and no prefix
#[inline]
fn empty() -> Self {
Self::from_header(Header::empty())
}
/// Create a new [`InnerNode`] using
/// `prefix` as the node prefix and
/// `prefix_len` as the node prefix length and
///
/// This is done because when a prefix mismatch happens
/// the length of the mismatch can be grater or equal to
/// prefix size, since we search for the first child of the
/// node to recreate the prefix, that's why we don't use
/// `prefix.len()` as the node prefix length
fn from_prefix(prefix: &[u8], prefix_len: usize) -> Self {
Self::from_header(Header::new(prefix, prefix_len))
}
/// Create a new [`InnerNode`] using a `Header`
fn from_header(header: Header<PREFIX_LEN>) -> Self;
/// Get the `Header` from the [`InnerNode`]
fn header(&self) -> &Header<PREFIX_LEN>;
/// Search through this node for a child node that corresponds to the given
/// key fragment.
fn lookup_child(
&self,
key_fragment: u8,
) -> Option<OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>>;
/// Write a child pointer with key fragment to this inner node.
///
/// If the key fragment already exists in the node, overwrite the existing
/// child pointer.
///
/// # Panics
/// - Panics when the node is full.
fn write_child(
&mut self,
key_fragment: u8,
child_pointer: OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>,
);
/// Attempt to remove a child pointer at the key fragment from this inner
/// node.
///
/// If the key fragment does not exist in this node, return `None`.
fn remove_child(
&mut self,
key_fragment: u8,
) -> Option<OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>>;
/// Grow this node into the next larger class, copying over children and
/// prefix information.
fn grow(&self) -> Self::GrownNode;
/// Shrink this node into the next smaller class, copying over children and
/// prefix information.
///
/// # Panics
/// - Panics if the new, smaller node size does not have enough capacity to
/// hold all the children.
fn shrink(&self) -> Self::ShrunkNode;
/// Returns true if this node has no more space to store children.
fn is_full(&self) -> bool {
self.header().num_children() >= Self::TYPE.upper_capacity()
}
/// Create an iterator over all `(key bytes, child pointers)` in this inner
/// node.
fn iter(&self) -> Self::Iter<'_>;
/// Create an iterator over a subset of `(key bytes, child pointers)`, using
/// the given `bound` as a restriction on the set of key bytes.
fn range(
&self,
bound: impl RangeBounds<u8>,
) -> impl DoubleEndedIterator<Item = (u8, OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>)>
+ FusedIterator;
/// Test the given key against the inner node header prefix by checking that
/// the key length is greater than or equal to the length of the header
/// prefix.
///
/// The `truncated_key` argument should be the overall key bytes shortened
/// to the current depth.
///
/// This is called "optimistic" matching, because it assumes that there will
/// not be a mismatch in the contents of the header prefix when compared to
/// the key. The caller who uses this function must perform a final check
/// against the leaf key bytes to make sure that the search key matches the
/// found key.
#[inline]
fn optimistic_match_prefix(
&self,
truncated_key: &[u8],
) -> Result<PrefixMatch, OptimisticMismatch> {
if truncated_key.len() < self.header().prefix_len() {
Err(OptimisticMismatch {
matched_bytes: truncated_key.len(),
})
} else {
Ok(PrefixMatch {
matched_bytes: self.header().prefix_len(),
})
}
}
/// Test the given key against the inner node header prefix by comparing the
/// bytes.
///
/// The `truncated_key` argument should be the overall key bytes shortened
/// to the current depth.
///
/// If the length of the header prefix is greater than the number of bytes
/// stored (there are implicit bytes), then this falls back to using
/// [`optimistic_match_prefix`][InnerNode::optimistic_match_prefix].
///
/// If this function fell into that condition, then the `any_implicit_bytes`
/// flag will be set to `true` in the `Ok` case and `prefix_byte` will be
/// set to `None` in the `Err` case.
///
/// If either of those conditions are true, and the caller of this function
/// reaches a leaf node using these results, then the caller must perform a
/// final check against the leaf key bytes to make sure that the search
/// key matches the found key.
#[inline]
fn attempt_pessimistic_match_prefix(
&self,
truncated_key: &[u8],
) -> Result<AttemptOptimisticPrefixMatch, PessimisticMismatch> {
if PREFIX_LEN < self.header().prefix_len() {
let PrefixMatch { matched_bytes } = self.optimistic_match_prefix(truncated_key)?;
Ok(AttemptOptimisticPrefixMatch {
matched_bytes,
any_implicit_bytes: true,
})
} else {
// All bytes are explicit, this can proceed as normal
let prefix = self.header().read_prefix();
let matched_bytes = prefix
.iter()
.zip(truncated_key)
.take_while(|(a, b)| **a == **b)
.count();
if matched_bytes < self.header().prefix_len() {
Err(PessimisticMismatch {
matched_bytes,
prefix_byte: Some(prefix[matched_bytes]),
})
} else {
Ok(AttemptOptimisticPrefixMatch {
matched_bytes,
any_implicit_bytes: false,
})
}
}
}
/// Compares the compressed path of a node with the key and returns the
/// number of equal bytes.
///
/// This function will read the full prefix for this inner node, even if it
/// needs to search a descendant leaf node to find implicit bytes.
///
/// # Safety
/// - `current_depth` > key len
#[inline]
fn match_full_prefix(
&self,
key: &[u8],
current_depth: usize,
) -> Result<PrefixMatch, ExplicitMismatch<Self::Key, Self::Value, PREFIX_LEN>>
where
Self::Key: AsBytes,
{
#[allow(unused_unsafe)]
unsafe {
// SAFETY: Since we are iterating the key and prefixes, we
// expect that the depth never exceeds the key len.
// Because if this happens we ran out of bytes in the key to match
// and the whole process should be already finished
assume!(current_depth <= key.len());
}
let (prefix, leaf_ptr) = self.read_full_prefix(current_depth);
let key = &key[current_depth..];
let matched_bytes = prefix
.iter()
.zip(key)
.take_while(|(a, b)| **a == **b)
.count();
if matched_bytes < prefix.len() {
Err(ExplicitMismatch {
matched_bytes,
prefix_byte: prefix[matched_bytes],
leaf_ptr,
})
} else {
Ok(PrefixMatch { matched_bytes })
}
}
/// Read the prefix as a whole, by reconstructing it if necessary from a
/// leaf
#[inline]
fn read_full_prefix(
&self,
current_depth: usize,
) -> (
&[u8],
Option<NodePtr<PREFIX_LEN, LeafNode<Self::Key, Self::Value, PREFIX_LEN>>>,
)
where
Self::Key: AsBytes,
{
self.header().inner_read_full_prefix(self, current_depth)
}
/// Returns the minimum child pointer from this node and it's key
///
/// # Safety
/// - Since this is a [`InnerNode`] we assume that the we have at least one
/// child, (more strictly we have 2, because with one child the node
/// would have collapsed) so in this way we can avoid the [`Option`].
/// This is safe because if we had no children this current node should
/// have been deleted.
fn min(&self) -> (u8, OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>);
/// Returns the maximum child pointer from this node and it's key
///
/// # Safety
/// - Since this is a [`InnerNode`] we assume that the we have at least one
/// child, (more strictly we have 2, because with one child the node
/// would have collapsed) so in this way we can avoid the [`Option`].
/// This is safe because if we had, no children this current node should
/// have been deleted.
fn max(&self) -> (u8, OpaqueNodePtr<Self::Key, Self::Value, PREFIX_LEN>);
}
/// This type alias represents an optional pointer to a leaf node.
pub(crate) type OptionalLeafPtr<K, V, const PREFIX_LEN: usize> =
Option<NodePtr<PREFIX_LEN, LeafNode<K, V, PREFIX_LEN>>>;
/// Node that contains a single leaf value.
#[derive(Debug)]
#[repr(align(8))]
pub struct LeafNode<K, V, const PREFIX_LEN: usize> {
/// The leaf value.
value: V,
/// The full key that the `value` was stored with.
key: K,
/// Pointer to the previous leaf node in the trie. If the value is `None`,
/// then this is the first leaf.
pub(crate) previous: OptionalLeafPtr<K, V, PREFIX_LEN>,
/// Pointer to the next leaf node in the trie. If the value is `None`,
/// then this is the last leaf.
pub(crate) next: OptionalLeafPtr<K, V, PREFIX_LEN>,
}
impl<K, V, const PREFIX_LEN: usize> LeafNode<K, V, PREFIX_LEN>
where
K: AsBytes,
{
/// Insert the leaf node pointed to by `this_ptr` into the linked list that
/// `previous_sibling_ptr` belongs to, placing the "this" leaf node after
/// the "previous sibling" in the list.
///
/// # Safety
///
/// This function requires that no other operation is concurrently modifying
/// or reading the `this_ptr` leaf node, the `previous_sibling_ptr` leaf
/// node, and the sibling leaf node of `previous_sibling_ptr`.
pub unsafe fn insert_after(
this_ptr: NodePtr<PREFIX_LEN, Self>,
previous_sibling_ptr: NodePtr<PREFIX_LEN, Self>,
) {
// SAFETY: Covered by safety doc of this function
let (this, previous_sibling) =
unsafe { (this_ptr.as_mut(), previous_sibling_ptr.as_mut()) };
if cfg!(debug_assertions) {
debug_assert!(
this.previous.is_none(),
"previous ptr should be None on insert into linked list"
);
debug_assert!(
this.next.is_none(),
"next ptr should be None on insert into linked list"
);
debug_assert!(
previous_sibling.key.as_bytes() < this.key.as_bytes(),
"sibling must be ordered before this leaf in the trie"
);
}
this.previous = Some(previous_sibling_ptr);
this.next = previous_sibling.next;
if let Some(next_sibling_ptr) = previous_sibling.next {
// SAFETY: Covered by safety doc of this function
let next_sibling = unsafe { next_sibling_ptr.as_mut() };
next_sibling.previous = Some(this_ptr);
}
previous_sibling.next = Some(this_ptr);
}
/// Insert the leaf node pointed to by `this_ptr` into the linked list that
/// `next_sibling_ptr` belongs to, placing the "this" leaf node before
/// the "next sibling" in the list.
///
/// # Safety
///
/// This function requires that no other operation is concurrently modifying
/// or reading the `this_ptr` leaf node, the `next_sibling_ptr` leaf
/// node, and the sibling leaf node of `next_sibling_ptr`.
pub unsafe fn insert_before(
this_ptr: NodePtr<PREFIX_LEN, Self>,
next_sibling_ptr: NodePtr<PREFIX_LEN, Self>,
) {
// SAFETY: Covered by safety doc of this function
let (this, next_sibling) = unsafe { (this_ptr.as_mut(), next_sibling_ptr.as_mut()) };
if cfg!(debug_assertions) {
debug_assert!(
this.previous.is_none(),
"previous ptr should be None on insert into linked list"
);
debug_assert!(
this.next.is_none(),
"next ptr should be None on insert into linked list"
);
debug_assert!(
this.key.as_bytes() < next_sibling.key.as_bytes(),
"this leaf must be ordered before sibling in the trie"
);
}
this.previous = next_sibling.previous;
this.next = Some(next_sibling_ptr);
if let Some(previous_sibling_ptr) = next_sibling.previous {
// SAFETY: Covered by safety doc of this function
let previous_sibling = unsafe { previous_sibling_ptr.as_mut() };
previous_sibling.next = Some(this_ptr);
}
next_sibling.previous = Some(this_ptr);
}
/// Insert the leaf node pointed to by `this_ptr` into the linked list
/// position that `old_leaf` currently occupies, and then remove `old_leaf`
/// from the linked list.
///
/// # Safety
///
/// This function requires that no other operation is concurrently modifying
/// or reading the `this_ptr` leaf node and the sibling leaf nodes of the
/// `old_leaf`.
pub unsafe fn replace(this_ptr: NodePtr<PREFIX_LEN, Self>, old_leaf: &mut Self) {
// SAFETY: Covered by safety doc of this function
let this = unsafe { this_ptr.as_mut() };
if cfg!(debug_assertions) {
debug_assert!(
this.previous.is_none(),
"previous ptr should be None on insert into linked list"
);
debug_assert!(
this.next.is_none(),
"next ptr should be None on insert into linked list"
);
debug_assert_eq!(
this.key.as_bytes(),
old_leaf.key.as_bytes(),
"To replace a node, the key must be exactly the same"
);
}
this.next = old_leaf.next;
this.previous = old_leaf.previous;
if let Some(prev_leaf_ptr) = this.previous {
// SAFETY: Covered by safety doc of this function
let prev_leaf = unsafe { prev_leaf_ptr.as_mut() };
prev_leaf.next = Some(this_ptr);
}
if let Some(next_leaf_ptr) = this.next {
// SAFETY: Covered by safety doc of this function
let next_leaf = unsafe { next_leaf_ptr.as_mut() };
next_leaf.previous = Some(this_ptr);
}
old_leaf.next = None;
old_leaf.previous = None;
}
}
impl<const PREFIX_LEN: usize, K, V> LeafNode<K, V, PREFIX_LEN> {
/// Create a new leaf node with the given value and no siblings.
pub fn with_no_siblings(key: K, value: V) -> Self {
LeafNode {
value,
key,
previous: None,
next: None,
}
}
/// Returns a shared reference to the key contained by this leaf node
pub fn key_ref(&self) -> &K {
&self.key
}
/// Returns a shared reference to the value contained by this leaf node
pub fn value_ref(&self) -> &V {
&self.value
}
/// Returns a mutable reference to the value contained by this leaf node
pub fn value_mut(&mut self) -> &mut V {
&mut self.value
}
/// Return shared references to the key and value contained by this leaf
/// node
pub fn entry_ref(&self) -> (&K, &V) {
(&self.key, &self.value)
}
/// Return mutable references to the key and value contained by this leaf
/// node
pub fn entry_mut(&mut self) -> (&mut K, &mut V) {
(&mut self.key, &mut self.value)
}
/// Consume the leaf node and return a tuple of the key and value
pub fn into_entry(self) -> (K, V) {
(self.key, self.value)
}
/// Check that the provided full key is the same one as the stored key.
pub fn matches_full_key(&self, possible_key: &[u8]) -> bool
where
K: AsBytes,
{
self.key.as_bytes().eq(possible_key)
}
/// This function removes this leaf node from its linked list.
///
/// # Safety
///
/// This function requires that no other operation is concurrently modifying
/// or reading the `this_ptr` leaf node and its sibling leaf nodes.
pub unsafe fn remove_self(this_ptr: NodePtr<PREFIX_LEN, Self>) {
// SAFETY: Covered by safety doc of this function
let this = unsafe { this_ptr.as_mut() };
if let Some(sibling_ptr) = this.previous {
// SAFETY: Covered by safety doc of this function
let sibling = unsafe { sibling_ptr.as_mut() };
sibling.next = this.next;
}
if let Some(sibling_ptr) = this.next {
// SAFETY: Covered by safety doc of this function
let sibling = unsafe { sibling_ptr.as_mut() };
sibling.previous = this.previous;
}
// Normally this is where I would reset the `previous`/`next` pointers
// to `None`, but it is useful in the delete case to keep this
// information around.
}
/// Create a copy of this leaf node with the sibling references removed.
pub fn clone_without_siblings(&self) -> Self
where
K: Clone,
V: Clone,
{
Self {
value: self.value.clone(),
key: self.key.clone(),
// We override the default clone behavior to wipe these values out, since its unlikely
// that the cloned leaf should point to the old linked list of leaves
previous: None,
next: None,
}
}
}
impl<const PREFIX_LEN: usize, K, V> Node<PREFIX_LEN> for LeafNode<K, V, PREFIX_LEN> {
type Key = K;
type Value = V;
const TYPE: NodeType = NodeType::Leaf;
}
#[cfg(test)]
mod tests {
use crate::rust_nightly_apis::ptr::const_addr;
use super::*;
use std::mem;
// This test is important because it verifies that we can transform a tagged
// pointer to a type with large and small alignment and back without issues.
#[test]
fn leaf_node_alignment() {
let mut p0 = TaggedPointer::<OpaqueValue, 3>::new(
Box::into_raw(Box::<LeafNode<[u8; 0], _, 16>>::new(
LeafNode::with_no_siblings([], 3u8),
))
.cast::<OpaqueValue>(),
)
.unwrap();
p0.set_data(0b001);
#[repr(align(64))]
struct LargeAlignment;
let mut p1 = TaggedPointer::<OpaqueValue, 3>::new(
Box::into_raw(Box::<LeafNode<LargeAlignment, _, 16>>::new(
LeafNode::with_no_siblings(LargeAlignment, 2u16),
))
.cast::<OpaqueValue>(),
)
.unwrap();
p1.set_data(0b011);
let mut p2 = TaggedPointer::<OpaqueValue, 3>::new(
Box::into_raw(Box::<LeafNode<_, LargeAlignment, 16>>::new(
LeafNode::with_no_siblings(1u64, LargeAlignment),
))
.cast::<OpaqueValue>(),
)
.unwrap();
p2.set_data(0b111);
unsafe {
// These tests apparently leak memory in Miri's POV unless we explicitly cast
// them back to the original type when we deallocate. The `.cast` calls
// are required, even though the tests pass under normal execution otherwise (I
// guess normal test execution doesn't care about leaked memory?)
drop(Box::from_raw(
p0.to_ptr().cast::<LeafNode<[u8; 0], u8, 16>>().as_ptr(),
));
drop(Box::from_raw(
p1.to_ptr()
.cast::<LeafNode<LargeAlignment, u16, 16>>()
.as_ptr(),
));
drop(Box::from_raw(
p2.to_ptr()
.cast::<LeafNode<u64, LargeAlignment, 16>>()
.as_ptr(),
));
}
}
#[test]
fn opaque_node_ptr_is_correct() {
let mut n4 = InnerNode4::<Box<[u8]>, usize, 16>::empty();
let mut n16 = InnerNode16::<Box<[u8]>, usize, 16>::empty();
let mut n48 = InnerNode48::<Box<[u8]>, usize, 16>::empty();
let mut n256 = InnerNode256::<Box<[u8]>, usize, 16>::empty();
let n4_ptr = NodePtr::from(&mut n4).to_opaque();
let n16_ptr = NodePtr::from(&mut n16).to_opaque();
let n48_ptr = NodePtr::from(&mut n48).to_opaque();
let n256_ptr = NodePtr::from(&mut n256).to_opaque();
assert!(n4_ptr.is::<InnerNode4<Box<[u8]>, usize, 16>>());
assert!(n16_ptr.is::<InnerNode16<Box<[u8]>, usize, 16>>());
assert!(n48_ptr.is::<InnerNode48<Box<[u8]>, usize, 16>>());
assert!(n256_ptr.is::<InnerNode256<Box<[u8]>, usize, 16>>());
}
#[test]
#[cfg(target_pointer_width = "64")]
fn node_sizes() {
const DEFAULT_PREFIX_LEN: usize = 4;
const EXPECTED_HEADER_SIZE: usize = DEFAULT_PREFIX_LEN.next_multiple_of(8) + 8;
assert_eq!(
mem::size_of::<Header<DEFAULT_PREFIX_LEN>>(),
EXPECTED_HEADER_SIZE
);
// key map: 4 * (1 byte) = 4 bytes
// child map: 4 * (8 bytes (on 64-bit platform)) = 32
//
// 4 bytes of padding are inserted after the `keys` field to align the field to
// an 8 byte boundary.
assert_eq!(
mem::size_of::<InnerNode4<Box<[u8]>, usize, DEFAULT_PREFIX_LEN>>(),
EXPECTED_HEADER_SIZE + 40
);
// key map: 16 * (1 byte) = 16 bytes
// child map: 16 * (8 bytes (on 64-bit platform)) = 128
assert_eq!(
mem::size_of::<InnerNode16<Box<[u8]>, usize, DEFAULT_PREFIX_LEN>>(),
EXPECTED_HEADER_SIZE + 144
);
// key map: 256 * (1 byte) = 256 bytes
// child map: 48 * (8 bytes (on 64-bit platform)) = 384
assert_eq!(
mem::size_of::<InnerNode48<Box<[u8]>, usize, DEFAULT_PREFIX_LEN>>(),
EXPECTED_HEADER_SIZE + 640
);
// child & key map: 256 * (8 bytes (on 64-bit platform)) = 2048
assert_eq!(
mem::size_of::<InnerNode256<Box<[u8]>, usize, DEFAULT_PREFIX_LEN>>(),
EXPECTED_HEADER_SIZE + 2048
);
// Assert that pointer is expected size and has non-null optimization
assert_eq!(
mem::size_of::<Option<OpaqueNodePtr<Box<[u8]>, (), DEFAULT_PREFIX_LEN>>>(),
8
);
assert_eq!(
mem::size_of::<OpaqueNodePtr<Box<[u8]>, (), DEFAULT_PREFIX_LEN>>(),
8
);
}
#[test]
fn node_alignment() {
assert_eq!(mem::align_of::<InnerNode4<Box<[u8]>, u8, 16>>(), 8);
assert_eq!(mem::align_of::<InnerNode16<Box<[u8]>, u8, 16>>(), 8);
assert_eq!(mem::align_of::<InnerNode48<Box<[u8]>, u8, 16>>(), 8);
assert_eq!(mem::align_of::<InnerNode256<Box<[u8]>, u8, 16>>(), 8);
assert_eq!(mem::align_of::<LeafNode<Box<[u8]>, u8, 16>>(), 8);
assert_eq!(mem::align_of::<Header<16>>(), 8);
assert_eq!(
mem::align_of::<InnerNode4<Box<[u8]>, u8, 16>>(),
mem::align_of::<OpaqueValue>()
);
assert_eq!(
mem::align_of::<InnerNode16<Box<[u8]>, u8, 16>>(),
mem::align_of::<OpaqueValue>()
);
assert_eq!(
mem::align_of::<InnerNode48<Box<[u8]>, u8, 16>>(),
mem::align_of::<OpaqueValue>()
);
assert_eq!(
mem::align_of::<InnerNode256<Box<[u8]>, u8, 16>>(),
mem::align_of::<OpaqueValue>()
);
assert_eq!(
mem::align_of::<LeafNode<Box<[u8]>, u8, 16>>(),
mem::align_of::<OpaqueValue>()
);
let n4 = InnerNode4::<Box<[u8]>, (), 16>::empty();
let n16 = InnerNode4::<Box<[u8]>, (), 16>::empty();
let n48 = InnerNode4::<Box<[u8]>, (), 16>::empty();
let n256 = InnerNode4::<Box<[u8]>, (), 16>::empty();
let n4_ptr = const_addr(&n4 as *const InnerNode4<Box<[u8]>, (), 16>);
let n16_ptr = const_addr(&n16 as *const InnerNode4<Box<[u8]>, (), 16>);
let n48_ptr = const_addr(&n48 as *const InnerNode4<Box<[u8]>, (), 16>);
let n256_ptr = const_addr(&n256 as *const InnerNode4<Box<[u8]>, (), 16>);
// Ensure that there are 3 bits of unused space in the node pointer because of
// the alignment.
assert!(n4_ptr.trailing_zeros() >= 3);
assert!(n16_ptr.trailing_zeros() >= 3);
assert!(n48_ptr.trailing_zeros() >= 3);
assert!(n256_ptr.trailing_zeros() >= 3);
}
pub(crate) fn inner_node_write_child_test<const PREFIX_LEN: usize>(
mut node: impl InnerNode<PREFIX_LEN, Key = Box<[u8]>, Value = ()>,
num_children: usize,
) {
let mut leaves = Vec::with_capacity(num_children);
for _ in 0..num_children {
leaves.push(LeafNode::with_no_siblings(vec![].into(), ()));
}
assert!(!node.is_full());
{
let leaf_pointers = leaves
.iter_mut()
.map(|leaf| NodePtr::from(leaf).to_opaque())
.collect::<Vec<_>>();
for (idx, leaf_pointer) in leaf_pointers.iter().copied().enumerate() {
node.write_child(u8::try_from(idx).unwrap(), leaf_pointer);
}
for (idx, leaf_pointer) in leaf_pointers.into_iter().enumerate() {
assert_eq!(
node.lookup_child(u8::try_from(idx).unwrap()),
Some(leaf_pointer)
);
}
}
assert!(node.is_full());
}
pub fn inner_node_remove_child_test<const PREFIX_LEN: usize>(
mut node: impl InnerNode<PREFIX_LEN, Key = Box<[u8]>, Value = ()>,
num_children: usize,
) {
let mut leaves = Vec::with_capacity(num_children);
for _ in 0..num_children {
leaves.push(LeafNode::with_no_siblings(vec![].into(), ()));
}
assert!(!node.is_full());
{
let leaf_pointers = leaves
.iter_mut()
.map(|leaf| NodePtr::from(leaf).to_opaque())
.collect::<Vec<_>>();
for (idx, leaf_pointer) in leaf_pointers.iter().copied().enumerate() {
node.write_child(u8::try_from(idx).unwrap(), leaf_pointer);
}
for (idx, leaf_pointer) in leaf_pointers.iter().copied().enumerate() {
assert_eq!(
node.lookup_child(u8::try_from(idx).unwrap()),
Some(leaf_pointer)
);
}
for (idx, leaf_pointer) in leaf_pointers.iter().copied().enumerate() {
assert_eq!(
node.remove_child(u8::try_from(idx).unwrap()),
Some(leaf_pointer)
);
assert_eq!(node.lookup_child(u8::try_from(idx).unwrap()), None);
}
}
assert!(!node.is_full());
}
pub(crate) fn inner_node_shrink_test<const PREFIX_LEN: usize>(
mut node: impl InnerNode<PREFIX_LEN, Key = Box<[u8]>, Value = ()>,
num_children: usize,
) {
let mut leaves = Vec::with_capacity(num_children);
for _ in 0..num_children {
leaves.push(LeafNode::with_no_siblings(vec![].into(), ()));
}
let leaf_pointers = leaves
.iter_mut()
.map(|leaf| NodePtr::from(leaf).to_opaque())
.collect::<Vec<_>>();
for (idx, leaf_pointer) in leaf_pointers.iter().copied().enumerate() {
node.write_child(u8::try_from(idx).unwrap(), leaf_pointer);
}
let shrunk_node = node.shrink();
for (idx, leaf_pointer) in leaf_pointers.into_iter().enumerate() {
assert_eq!(
shrunk_node.lookup_child(u8::try_from(idx).unwrap()),
Some(leaf_pointer)
);
}
}
// --------------------------------------- ITERATORS
// ---------------------------------------
pub(crate) type FixtureReturn<Node, const N: usize> = (
Node,
[LeafNode<Box<[u8]>, (), 16>; N],
[OpaqueNodePtr<Box<[u8]>, (), 16>; N],
);
}